

Dr. David K. Ryan Department of Chemistry University of Massachusetts Lowell &

Intercampus of Marine Sciences Program

http://faculty.uml.edu/David_Ryan/84.653

Ion-Ion Interactions

- Many types non-specific, bonding, contact, solvent shared, solvent separated
- Non-specific i.e., long range interactions and the concepts of ionic strength, activity & activity coefficient
- # Specific interactions e.g. complexation, ion
 pairing (strong or weak)
- **#** Millero cartoons

http://fig.cox.miami.edu/~lfarmer/MSC215/MSC215.HTM

Long Range Non-Specific Interactions

Electrostatic effects also occur for specific interactions (i.e. chemical reactions)

Non-specific Interaction

(When a particular ion of interest is affected by other ions)

- **#** Electrostatic in nature
- **#** Limits effectiveness of ion in solution
- **#** Use concept of **activity** to quantify effect

(activity = effective concentration, accounts for non-ideal behavior)

- $\mathbf{a}_{i} = [\mathbf{i}]_{F} \gamma_{F}(\mathbf{i})$ where \mathbf{a}_{i} = activity of ion i
 - $[i]_F =$ free ion conc. (m)
 - $\gamma_F(i) = activity coefficient$ of ion i

In short $\mathbf{a} = [\mathbf{i}] \gamma$

Activity of Individual Ion Influenced by Other Ions

Ionic Strength of solution

 $\mathbf{I} = \mathbf{0.5} \ \mathbf{\Sigma} \ \mathbf{Z}^2 \ \mathbf{m}$

where I = ionic strength
Z = charge on ion
m = molal conc.
(molarity or molinity
 can also be used)

$$a = [i] \gamma$$

H Debye-Huckel Theory is starting point

(Primarily for very low ionic strength)

$$\ln \gamma \pm = -A Z^2 I^{0.5} \qquad \text{original D.H.}$$
or
$$\ln \gamma \pm = -S_f I^{0.5} / (1 + A_f a I^{0.5}) \qquad \text{extended}$$

Where γ± is the mean ion activity coefficient
S_f, A & A_f are constants related to temperature
I is ionic strength & a is the ion size parameter in Å
Z is the charge on the ion

Guntelberg Approximation

$$\ln \gamma \pm = - A Z^2 [I^{0.5}/(1 + I^{0.5})]$$

Where $\gamma \pm$ is the mean ion activity coefficient A is a constant I is ionic strength Z is the charge on the ion Useful for I > 0.1

Davies Equation

$$\ln \gamma \pm = - A Z^2 [I^{0.5} / (1 + I^{0.5}) - 0.2 I]$$

Where $\gamma \pm$ is the mean ion activity coefficient A is a constant (= 1.17) I is ionic strength Z is the charge on the ion Useful for $I \sim 0.5$

#Bronsted-Guggenheim

$$\ln \gamma \pm = \ln \gamma_{DH} + \sum_{j} B_{ij}[j] + \sum_{j} \sum_{k} C_{ijk}[j][k] + \dots$$

Where $\gamma \pm$ is the mean ion activity coefficient γ_{DH} is the γ from Debye-Huckel B_{ij} is a virial coefficient for ion pairs C_{ijk} is a virial coefficient for three ions Useful at any I

Comparison of Davies Equation & Extended Debye-Huckel for monovalent Ions

Morel & Hering 1993

Activity Coefficient vs. Conc., Monovalent & Divalent Systems

FIGURE 4-2 Activity coefficient as a function of concentration in the solution: (A) ideal solution for which $\gamma = 1.00$ at all concentrations: (B) activity coefficient for Na⁺ in NaCl solutions; (C) activity coefficient for Ca²⁺ in CaCl₂ solution.

FIGURE 4-1 Activity as a function of concentration: (A) ideal solution for which a = C: (B) Na⁺ activity in NaCl; (C) Ca²⁺ activity in CaCl₂.

Putting It All Together

- **#** Calculate ionic strength from concentrations of all ions in solution using $I = 0.5 \Sigma Z^2 m$
- **#** Use Davies Equation to calculate activity coefficients for all ions of interest (Z = 1,2,3,4) $\ln \gamma \pm = -A Z^2 [I^{0.5}/(1 + I^{0.5}) - 0.2 I]$
- **#** Calculate activity of the ions of interest using their concentrations and activity coefficients $\mathbf{a} = [\mathbf{i}] \gamma$

Example: pH of SW

pH is defined as the negative logarithm of the hydrogen ion activity $pH = -log a_{H^+}$

At a typical ionic strength of seawater I = 0.7From Davies Equation H⁺ activity coefficient $\ln \gamma = -A Z^2 [I^{0.5}/(1 + I^{0.5}) - 0.2 I]$ If Z = 1 & A = 1.17 then $\ln \gamma = -0.37 \& \gamma = 0.69$

Example: pH (cont.)

If a typical seawater pH is 8.2 Then H⁺ activity is 1 x 10^{-8.2} or 6.31 x 10⁻⁹ M From $\mathbf{a} = [\mathbf{i}]\gamma$ or $\mathbf{a}_{\mathrm{H^+}} = [\mathrm{H^+}]\gamma_{\mathrm{H^+}}$ & calculated $\gamma = 0.69$ $6.31 \times 10^{-9} \mathrm{M} = [\mathrm{H^+}] \times 0.69$ $[\mathrm{H^+}] = 9.14 \times 10^{-9} \mathrm{M}$

Activity of H⁺ is 31% lower than it's concentration Effectiveness of H⁺ is 31% lower due to crowding This phenomenon is greater for divalent ions

At salinity (PSS 1978): $S = 35.000$			
g/kg	mmol/kg	mM	
10.781	468.96	480.57	
0.399	10.21	10.46	
1.284	52.83	54.14	
0.4119	10.28	10.53	
0.00794	0.0906	0.0928	
19.353	545.88	559.40	
2.712	28.23	28.93	
0.126	2.06	2.11	
0.0673	0.844	0.865	
0.0257	0.416	0.426	
0.00130	0.068	0.070	
	At salinii g/kg 10.781 0.399 1.284 0.4119 0.00794 19.353 2.712 0.126 0.0073 0.0257 0.00130	At salinity (PSS 1978): $S = 35.0$ g/kgmmol/kg10.781468.960.39910.211.28452.830.411910.280.007940.090619.353545.882.71228.230.1262.060.06730.8440.02570.4160.001300.068	

 Table 4.1 Concentrations of the major constituents in surface seawater

SW Density = 1.024763 kg/L at 20 °C (Pilson 1998)

Major Components of SW

- Na⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻ and SO₄²⁻ are most abundant
- Account for 98.5 % of dissolved species in SW
 Have major influence on SW density
 Have long residence time in the ocean
 Generally exhibit conservative behavior
 - Concentration influenced by physical processes such as evaporation & precipitation, not chemical or biological processes
- **#** Discussing completely dissolved species

Element Concentrations in Average River & Average Ocean Water with Residence Times

999 - 99	Conc. Mean River	Conc. Mean Sea	τ
	(10 ⁻⁶ moles/kg)	(10 ⁻⁶ moles/kg)	(yrs)
Na Mg Al Si P S Cl Ar K Ca	2.2×10^{2} 1.6×10^{2} 1.9 1.9×10^{2} 1.3 $-$ 3.4×10^{1} 3.6×10^{2}	$\begin{array}{r} 4.7 \times 10^{5} \\ 5.3 \times 10^{4} \\ (3 \times 10^{-2}) \\ 1.0 \times 10^{2} \\ 2.3 \\ 2.8 \times 10^{4} \\ 5.5 \times 10^{5} \\ 1.5 \times 10^{1} \\ 10.2 \times 10^{3} \\ 10.3 \times 10^{3} \end{array}$	$\begin{array}{c} 8.3 \times 10^{7} \\ 1.3 \times 10^{7} \\ 6.2 \times 10^{2} \\ 2.0 \times 10^{4} \\ 6.9 \times 10^{4} \\ \\ - \\ - \\ 1.2 \times 10^{7} \\ 1.1 \times 10^{6} \end{array}$

Broecker and Peng (1982) 19

Cycling of SW Components

"The sea is a way station for the products of continental erosion. All substances received by the sea are ultimately passed along to the sediment...tectonic forces...eventually push the material buried in this way back above sea level where it becomes subject to erosion. Then another trip through the sea begins."

Broecker and Peng (1982)

Cycling of SW Components

- Most components are recycled many times within SW by a variety of processes
- **\blacksquare** Can determine residence times (τ) in ocean
- **#** Constituents can be classified as:
 - Biolimiting totally depleted in surface water
 - Biointermediate partially depleted
 - Biounlimited no measurable depletion
 - Noncycling reactive & removed

Broecker and Peng (1982)

SW Composition

The composition of SW generally reflects two factors:

1) The relative abundance of the substance in river water (i.e., the input)

2) The presence of removal mechanisms that result in entrapment of the material in sediments (i.e., the output)

Major Components of SW

- Na⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻ and SO₄²⁻ are most abundant
- **#** Account for 98.5 % of dissolved species in SW **Have major influence on SW density Have long residence time in the ocean #** Generally exhibit **conservative** behavior Concentration influenced only by physical processes such as evaporation & precipitation, not chemical or biological processes
- **#** Discussing completely dissolved species

Conservative Mixing

Volume Ratio of Water Mass

Volume Ratio of Water Mass

Marcet Principle (1819)

- Relative composition of sea salt is nearly the same worldwide, i.e., major constituents are conservative
- **#** Constancy of Composition
- # Principle of Constant Composition (Pilson)
- **#** Rule of Constant Proportions (Libes)
- **#** First Law of Chemical Oceanography (Kester)
- **#** Several exceptions to the rule

Exceptions to the Rule (or non-conservative behavior)

- Caused by processes such as: Reduction, Dissolution, Evaporation, etc.
- Estuaries & Marginal Seas largely input of river water of different composition & other processes also (e.g., Baltic Sea)
- **#** Evaporation in Isolated Basins evaporites
- Hydrothermal Vents brines high in salt
- Precipitation & Dissolution aragonite & calcite dissolution in deep ocean increase
 Ca²⁺ levels with precipitation elsewhere

Exceptions to the Rule (continued)

- **#** Anoxic Basins bacterial reduction of SO_4^{2-} to S^{2-}
- Exchange at the Air-Sea interface causes fractionation of many components
- Freezing sea ice can be deficient in one or more constituents causing local concentration anomalies
- Interstitial Waters or Pore Waters variety of processes many related to high surface areas in contact with water & anoxia

Cl⁻ has been Described as the Ultimate Conservative Tracer

- **#** Highest concentration in SW
- **#** Not biologically depleted
- **#** Not chemically limited
- **\blacksquare** One of the longest Residence Times (1 x 10⁸ yr)
- **#** Generally pretty boring
- ♯ Oceanographers have used Cl⁻ concentration to define the concentration of ocean water masses

■ Concept of Chlorinity = Cl⁻ (+ Br⁻) content of SW

Chlorinity (Cl)

The number giving chlorinity in per mille of a seawater sample is by definition identical with the number giving the mass with unit gram of atomic weight silver just necessary to precipitate the halogens in 0.3285234 kg of the seawater sample (Jacobsen & Knudsen, 1940).

Salinity (S)

- Historical Definition Total amount of solid material, in grams, contained in 1 kg of seawater when all carbonate has been converted to oxide, the bromide and iodine replaced by chlorine, and all organic matter completely oxidized
- # Practical Salinity Scale Conductivity of seawater compared to KCl at 32.4356 g/kg (15 °C)

Practical Salinity Scale (PSS 1978)

- $\blacksquare R_T = C \text{ (sample)/C (std seawater)}$
- $\blacksquare C = conductivity at specified temp. & pressure$
- **\blacksquare** Formerly used units of parts per thousand (°/₀₀)
- **#** Unitless since based on a ratio
- **#** Often see PSU or practical salinity units
- **#** Calibrate instrumentation with SW standard

Absolute Salinity (S_R)

SCOR/IAPSO

Scientific Committee on Oceanic Research International Agency for the Physical Sciences of the Oceans

- WG 127 Thermodynamics & Equations of State of SW
- Density, Enthalpy, Entropy, Potential temp.,Freezing temp.,
- Dissolved oxygen, Alkalinity, TCO₂, Ca, Silica

 $S_R = (35.16504 / 35) \text{ g/kg x S}$

Precision in Salinity by Various Methods

1)	Composition Studies of major components	\pm 0.01
2)	Evaporation to dryness	± 0.01
3)	Chlorinity	\pm 0.002
4)	Sound Speeds	± 0.03
5)	Density	± 0.004
6)	Conductivity	± 0.001
7)	Refractive index	± 0.05
8)	Inductive Salinometer	

Relationship between Salinity & Chlorinity

S = 1.80655 Cl

See Website for Salinity Handouts 1 - 4

Shown with optional cage, SBE 5T pump, & SBE 43 DO sensor

100

100

CTDs

www.seabird.com www.valeport.co.uk

Chemical Equilibria

General representation

$a \mathbf{A} + b \mathbf{B} \rightleftharpoons c \mathbf{C} + d \mathbf{D}$

Where uppercase letters are chemical species and lowercase letters are coefficients (i.e. # of atoms or moles)

Equilibrium Constant

where [] = concentration, usually molar

Solubility Equilibria

$$\operatorname{Ba^{2+}}_{(aq)} + \operatorname{SO_4^{2-}}_{(aq)} \longrightarrow \operatorname{BaSO_{4(s)}}$$

or by convention

$$BaSO_{4(s)} \iff Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$

activity of solid is defined as = 1

Solubility Calculated

Solubility (S) is the concentration of individual ions generated from an insoluble compound

$$BaSO_{4(s)} \iff Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$
$$S = [Ba^{2+}] = [SO_4^{2-}]$$

Solubility Calculation (continued)

Given $K_{SP} = [Ba^{2+}][SO_4^{2-}] = 2.0 \times 10^{-10}$

Then S = $\sqrt{K_{SP}} = \sqrt{2.0 \times 10^{-10}} = 1.4 \times 10^{-5}$

So $S = [Ba^{2+}] = [SO_4^{2-}] = 1.4 \times 10^{-5}$

 $a_{Ba} = \gamma_{Ba} [Ba^{2+}] \& a_{SO4} = \gamma_{SO4} [SO_4^{2-}]$ Substituting

 $K_{SP} = a_{Ba}a_{SO4} = \gamma_{Ba} [Ba^{2+}]\gamma_{SO4} [SO_4^{2-}]$

Solubility Calculation (completed)

Since

$$K_{SP} = [Ba^{2+}][SO_4^{2-}] \& \gamma_{Ba} = \gamma_{SO4}$$

Then
$$S = \sqrt{\frac{K_{SP}}{\gamma^2}}$$

To determine the solubility of $BaSO_4$ in a solution containing other ions (like SW), you must calculate the activity coefficient (γ)